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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1987, VOL. 6, NO. 3,227-250 

Computer modelling of silicates 

C. R. A. CATLOW 
Department of Chemistry, University of Keele, ST5 5BG, U.K. 

and A. N. CORMACK 

NYS College of Ceramics, Alfred University, Alfred, NY 14802, U.S.A. 

We describe the basic methodologies and applications of computer modelling 
methods applied to the simulation of silicates and aluminosilicates. We discuss the 
use of distance least squares (DLS), electrostatic, Born-model and quantum 
mechanical methods. We consider applications to the simulation of the structures 
and defect properties of silicates. We include discussions of recent work on zeolites 
and on Mg,SiO,. 

1. Introduction 
The diversity and complexity of silicate minerals provides a powerful incentive for 

the development of theoretical methods for modelling their structures and properties. 
Further motivation follows from the need for information on the behaviour of silicate 
minerals under conditions where experimental investigation is difficult: a good example 
is provided by very high pressure studies, which pose severe experimental problems, 
but which are needed in order to understand the geophysics of the earth’s mantle. The 
last few years have seen a considerable expansion in modelling studies of silicates, 
owing both to the growing appreciation of the potential of these methods and to the 
expansion in computer power; indeed the growth in computational resources has been 
an essential feature in allowing the modelling of such materials. In this review, we will 
discuss the current status of this rapidly developing field. Our main theme will be the 
simulation of crystalline silicate structures; but we will also discuss the calculation of 
other properties, including elastic and dielectric constants and phonon dispersion 
curves. We will then consider the important area of point defect calculations. And at the 
more fundamental level we will need to consider the difficult and controversial 
problems concerning bonding in silicates. We note that the modelling of amorphous 
silicates is also an active area, but is outside the scope of this review. The interested 
reader is referred to the recent review by Soules (1982). 

There have been four distinct types of method used in modelling silicates. The first is 
empirical procedures based on measured bond lengths, of which the most notable has 
been the distance least squares (DLS) method; the second, purely electrostatic 
calculations; the third, Born-model techniques in which both the electrostatic and short- 
range energies are considered, with the latter usually treated by simple parametrized 
potentials; and finally, quantum mechanical methods have been used, including both 
semi-empirical and ab iaitio techniques. 

In the sections which follow we will first describe each of the techniques and survey 
those classes of minerals for which calculations have been reported. We aim to give a 
critical account of the types of information given by the different techniques and a 
survey of areas where progress may be expected in the near future. First, however, it is 
necessary to summarize briefly the types of structure adopted by silicate minerals. 
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228 C. R. A. Catlow and A .  N .  Cormuck 

2. Structural classification of silicates and sluminosilicates 
The traditional means of classification of these minerals is according to the mode of 

linkage of the constituent (Si, Al)O, tetrahedra. Most, if not quite all, structures then 
fall naturally into one of four main categories. We will describe each category without 
being exhaustive, giving examples of structures that have been modelled using the 
techniques outlined in the Introduction and which will be discussed in greater detail 
below. For a more detailed account of structural mineralogy we refer the reader to Deer 
et al. (1982). 

(i) Orthosilicates 
These consist of isolated tetrahedra which are connected to different kinds of 

coordination polyhedra (e.g. octahedra) rather than to other tetrahedra. The most 
familiar mineral in this group is olivine, the magnesium end member of which, 
Mg,SiO,, has been the subject of several simulations. Other minerals in this group are 
the zircons, (e.g. ZrSiO,), and the garnets; calculations on both of these structural 
classes are discussed in Section 3.3. Note that in these minerals, little or no substitution 
of Si by A1 is found. 

Closely related to this group are structures which incorporate pairs of tetrahedra, 
forming isolated Si,O, group. An important mineral group with this mode of linkage is 
epidote. Si,O, groups are also found in the spinelloids which are structurally closely 
related to both olivine and spinel and are exemplified by /?-olivine which has been 
modelled by Baur (1977) and Parker and Price (1985). 

(ii) Metasilicates 
Into this group fall those structures containing SiO, tetrahedra linked together to 

form chains. Minerals with single-chain structures include the pyroxene family, e.g. 
diopside and enstatite, and the related pyroxenoids (wollastonite, rhodonite and 
pyroxmangite) which differ from pyroxenes principally in the number of tetrahedra 
forming the repeat unit in the chain (see figure 1). Born-model calculations on these 
structures were reported by Catlow et al. (1982). 

Figure 1. Structure of pyroxene and pyroxenoides: (a) pyroxene; (b) wollastonite; (c) rhodonite; 
( d )  pyroxmangite. 
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Figure 2. Amphibole structure: (a) double chain linkage; (b)  stacking of double chains. 

There are several ways in which pyroxene chains may be linked together to form 
double chains but the simplest, with every second tetrahedron in one pyroxene chain 
being linked to a tetrahedron in the other chain, is found in the important amphibole 
group of minerals (figure 2). 

(iii) Phyllosilicates 
In the phyllosilicates, the tetrahedra share vertices to form sheets, which may be 

combined with other sheets to form composite layers which then provide the principal 
structural feature of this group. Two principle subgroups of the sheet silicates, the micas 
and clays, are generally recognized, although of course there may be substantial 

The idealized composite layer structure of the mica family (figure 3) of which 
muscovite and biotite are perhaps the best known, consists of two sheets of SiO, 
tetrahedra with their apices pointing inwards; these are joined by a plane of cations 
whose octahedral coordination is completed by additional hydroxyl ions. The net 
negative charge of this composite layer is compensated by interlayer cations suchas K, 
Na and Ca. 

It is possible to stack successive composite layers in a considerable variety of ways 
and this leads to numbers of different polytypes, within the same mineral t j  .. Polytype 
formation is not well understood but may depend on such factors as the composition 
and distribution of cations within the octahedral plane. Theoretical studies of this 
problem would clearly be of value although few have been reported to date (but see the 
work of Price et al. (1984, 1985), who have coupled their ANNNI (axial next-nearest 
neighbour Ising) model with lattice energy calculations of possible polytypic structures 
in. the Mg,SiO, system). 

i differences within each subgroup. 

0 

Figure 3.  Idealized mica structure in which sheets of tetrahedra sandwich octahedrally 
coordinated cations (large black dots). 
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The taxonomy of micas is very extensive. Their chemical composition may be 
written as X,Y,,Z,O,, (OH), where X denotes the interlayer cations, typically K, Na 
and Ca (or possibly Rb, Cs, Ba); Y denotes the octahedral cations, usually Al, Mg or Fe 
(but Mn, Cr, Ti and even Li have been found) and Z denotes the tetrahedral sites which 
mainly contain Si, with some Al, although Fe and Ti have been suspected. Note also 
that F has been found to substitute for some of the OH groups. Theoretical studies of 
the energetics of these replacements are reported by Jenkins and co-workers; they will 
be described in Section 3.2. 

The clay minerals, broadly speaking, differ from the micas mainly through having 
interlayer water molecules. There are four principle subgroups of clays: kaolinites, 
illites, semectites and vermiculites. The latter has been studied theoretically by Jenkins 
and co-workers and will be considered in a later section. Otherwise, clays have received 
relatively little attention from theoreticians although they are continuing sources of 
interest owing to their useful catalytic properties, in which they in some ways resemble 
the zeolites discussed in the next section. 

(iv) Tectosilicates 
The fourth major group of silicates comprises those structures in which the 

tetrahedra are linked to formframework structures. Minerals in this group form some of 
the most abundant species: feldspars, the major component of igneous rocks, silica- 
SO,-minerals themselves, i.e. quartz, tridymite, cristobalite, coesite, etc., and the 
zeolites which are amongst the commercially most important of minerals. Surprisingly 
enough, the feldspars have received little theoretical attention, perhaps because efforts 
to model quartz have, until recently, been unsuccessful. Because of their industrial 
significance, on the other hand, zeolites have been the subject of a number of 
calculations. 

Zeolites display a variety of structural types, which differ in their linkage topology. 
The primary feature is the existence of rings or nets of tetrahedra which can be joined in 
a variety of ways. These are commonly four, six or eight-membered rings as found in 
those zeolites which contain the sodalite unit as a primary feature, such as zeolite-A, 
faujasite and chabazite, but the pentasil zeolites, e.g. silicate ZSM-5 and ZSM-11, are so 
called because they contain 5-membered rings. 

Smith (1979 et seq.) has investigated the different ways the nets may be joined, in an 
effort to enumerate systematically the possible structures. So far only a small number of 
those possible have been found in nature or synthesized. 

Chemically, the presence of A1 in the tetrahedral site is balanced by extra non- 
framework cations such as Na, K, Sr, etc., in the cavities and channels formed in the 
framework structure. The water in hydrous zeolites is located in these cavities as well, 
although it is usually possible to remove all of it. The cavities and channels vary in size 
and shape according to the actual structure but are large enough to accommodate 
substantially sized hydrocarbons and other organic molecules. Indeed, as is well 
known, zeolites are often used as molecular sieves, filtering out undesirable molecules 
through a judicious choice of channel size. The existence of the cavities and channels 
results in zeolites having a very large internal 'surface' area which thus makes them 
important as catalysts, since the catalytically active sites are usually found on the 
surface of crystals. For a more complete description of the uses and structure of zeolites 
the reader may refer to the Proceedings of the Sixth International Zeolite Conference 
(Olson and Bisio 1984). We will discuss several examples of recent calculations on 
zeolites in Section 3.3. 
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3. Techniques and applications 
As outlined in the Introduction, modelling techniques range from semi-empirical 

procedures, based on bond lengths, to quantum mechanical methods, using the 
Hartree-Fock formalism. Each of these approaches is now described, with examples 
taken from the recent literature. 

23 1 

3.1. DLS modelling of aluminosilicates 
The philosophy behind DLS (Distance Least Squares) modelling is one of geometric 

refinement. There is a wealth of experiment data, from crystal structure determinations, 
on bond lengths in aluminosilicates, and the DLS program (Meier and Villiger 1969, 
Baerlocher et al. 1978) makes use of this database by optimizing atomic coordinates 
and unit cell parameters to provide a best fit to the prescribed or input bond lengths. 

From an initial set of atomjc positions (which may be chosen at random, subject to 
symmetry constraints) the function, 

where the Dj are bond lengths or distances, and Wj are weighting factors, is minimized, 
by the method of least squares, with respect to the atomic coordinates and, possibly, if 
desired, to the unit cell parameters. The function R is usually called 'the residual' and is 
a minimum at the best fit to the set of prescribed distances. A useful feature of the DLS 
program is that for framework structures, the topology of the framework can be used to 
generate the set of prescribed distances: for example the T-0 bond length is input and 
the various independent T-0-T linkages are described. The program then calculates 
several 0-0 and T-T bond lengths from default values of the bond angles used by the 
program (which may be overriden). The program also uses symmetry constraints which 
must be explicitly included as part of the input data. Thus although the residuals of 
calculations in two different space-groups may be compared, DLS can never change the 
symmetry during its optimization. 

Nevertheless, the combination of a topological input facility and an initial random 
generation of coordinates can be advantageous in that the optimized results may 
sometimes be used as a starting model for structure refinement. This approach has been 
used for zeolites and will be discussed below. 

Different weighting factors are commonly applied for different bond lengths in 
order to allow for the fact that the observed bond lengths show varying degrees of 
spread; in addition they may be used to alter the relative importance of the different 
distances used in the fit. There has been some discussion in the literature concerning the 
best weighting factors to use. A common choice has been to make them proportional to 
bond strengths (Meier and Villiger 1969, Dempsey and Strens 1976) for cation-oxygen 
bond lengths, although this cannot be used to find weights for oxygen-xygen and 
cation-cation bond lengths. 

A more appropriate scheme, proposed by Baur (1977) and Bish and Burnham 
(1  984) may be to use force constant data, where this is known from infrared or Raman 
studies. It should be noted that the various ways of finding weighting factors usually 
produce numerical values which appear somewhat different, but just what effect the 
different weights have on the final optimized structure is not really clear. Bish and 
Burnham (1985) report some unsatisfactory features in their simulation of the 
hypothetical antidiopside structure, including lack of convergence. 
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Unpublished work on dehydratedzeolite A by Cormack and Smith found that DLS 
could not reproduce the large differences in the T-0-T angles unless the prescribed 
distances incorporated the necessary features from the onset. Changing the cell 
parameter resulted in a change in the shape of the SiO, tetrahedra, rather than an 
adjusment of T-0-T bond angles. They were unsuccessful in finding a weighting 
scheme that kept the SiO, tetrahedra unaltered in shape. 

These points illustrate the basic limitations in the use of DLS, since the selection of 
distances and bond lengths to be used is obviously of prime importance. Notwithstand- 
ing this, however, DLS simulations have been used with profit, especially when 
combined with other methods such as lattice energy calculations or as an aid to 
structure refinement. Dollase and Baur (1976), for example, used DLS to unravel the 
structure of a meteoritic low tridymite structure. Although the first model produced by 
DLS was not completely compatible with the data, it elucidated sufficient detail so that 
an additional calculation allowed the diffraction data to be satisfactorily refined. 

Recently Bish and Burnham (1984) have combined DLS structures for a range of 
binary olivines with cohesive energy calculations to investigate the energetics of 
ordering in the M1-M2 cation sites. In each of the eight cases they investigated, they 
found that the calculated site preferences agreed with the observed distributions. They 
also concluded, significantly, that omitting repulsive terms, i.e. considering only 
electrostatic energies, did not lead to the same predictions; furthermore, neither did 
consideration of just the individual M1 and M2 site energies for the ordered and anti- 
ordered distributions. 

An area which has recently seen a great deal of activity using the DLS approach is 
the structural chemistry of zeolites. Detailed structural refinements are available, in 
many cases, only through Rietveld analysis of neutron diffraction data of powders, 
since single crystals are very difficult to prepare. A trial model (i.e. an initial set of 
atomic coordinates) is invariably needed for this method and where the topology of the 
framework is known this can easily be provided from a DLS model using the 
appropriate bond lengths. Indeed, it has been suggested (e.g. Gramlich-Meier and 
Meier 1982) that DLS methods may be used to discard hypothetical frameworks that 
cannot be optimized. The feasibility of trial models produced in this way has been 
discussed by Olson et al. (1981) in considering ZMS-5 (see also Kokotailo et al. 1978 b); 
trial coordinates for ZSM- 11 were calculated by considering the possible topologies 
and linkages of the ZSM-5 structural chains, consistent with the observed unit cell 
parameters (Kokotailo et al. 1978 a). However, in view of the experience of Bish and 
Burnham (1 984) with their weighting factors and the fact that Al, Si ordering may lead 
to substantially different bond lengths from the average ones supplied to the DLS 
program, a certain amount of caution is required. 

The case of zeolite-rho perhaps serves as an illustration. McCusker and Baerlocher 
(1984) did DLS refinements in both Im3m and I43m for the room temperature, 
hydrated, structure and found a substantially lower residual, R, for I43m (003% 
compared with 045% for Im3m). However, on refining the powder X-ray data in I43m, 
no significant change from Im3m symmetry was found and a refinement in the latter 
space group produced no increase in the error indices. Although the final refinement 
was still regarded as poor, they concluded that the appropriate space-group should be 
Im3m, contrary to the predictions from the DLS models. Parise et al. (1984) used DLS 
to find the structure of (dehydrated) zeolite-rho as a function of cell size. They reported 
that the residual for IS3m was always lower than that for Im3m except around 
a = 15-0 A, which was around the largest cell size investigated experimentally. 
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Computer modelling of silicates 233 

Considerable changes to the framework are found on changing the lattice parameter 
(through incorporation of different non-framework cations), but the comparison of the 
experimental coordinates with those calculated by DLS seemed poor. 

It would seem that whilst one important use for DLS is to provide atomic 
coordinates from any given framework topology, this technique may not be able to 
evaluate adequately, or consistently, such details of the structure as bond lengths and 
bond angles. An obvious role for the DLS program is thus to provide an initial 
structure which can then be used in an energy minimization calculation using the 
techniques described in later sections. This approach would make good use of various 
computational techniques available and would take one step further the combination 
of DLS and lattice energy calculations reported by Burnham and co-workers. 

3.2. Electrostatic calculations 
In this simplest of theoretical approaches, one may calculate the total electrostatic 

contribution to the lattice energy and the Madelung potential at individual sites in the 
crystals. The value E ,  of the latter potential at site i is given by 

The sum is over all other ions of charge qjin the crystal; r i j i s  the separation between the 
i and the j ions. The electrostatic contribution to the lattice energy, E:"", is then given 
by; 

where the sum is over all ions in the unit cell. We note that the Madelung potentials, 
may of course be calculated for sites that are not normally occupied in the crystal. 

Care must be taken in carrying out the l / r i j  summations in equation (1). The series, 
which must be taken to infinity, is only slowly convergent when handled in real space. 
However, a transformation, due originally to Ewald, solves the convergence problem 
by a notional division of the array of point charges into two components: the first is a 
set of Gaussians centred on the point charges; the second consists of a set of point 
charges embedded in oppositely charged Gaussians. The addition of the two 
components, of course, generates the original point-charge array. The value of the 
procedure is that the second component results in a contribution for the electrostatic 
potential which converges rapidly when summed in real space, whereas the first 
component can also be made rapidly convergent by a transformation to reciprocal 
space. Detailed discussions of the procedure are given in the review of Tosi (1964) and 
the report of Catlow and Norgett (1976). The Ewald technique forms the basis of most 
modern computational codes for evaluating electrostatic energies in crystals. 

Other summation procedures have been used in earlier work. Evjen's method, for 
example, obtains Madelung potentials at a point by calculating the potentials due to 
successive shells surrounding the point. The shell should be chosen so as to be neutral 
with zero dipole moment, i.e. their contribution to the potential at the centre is due to 
higher-order multipole moments. This leads to rapid convergence. The method is, 
however, less readily automated than the Ewald procedure which is consequently 
generally preferred in modern computer codes. 
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The computational expense of electrostatic summations has led to search for 
reliable approximate methods. One of the most detailed studies was that of Jenkins and 
Hartman (1979) (see also Jenkins (1982)) who have attempted to derive techniques 
which allow summations to be performed for whole classes of structure. This is 
straightforward provided we ignore variations in the coordinates of the different 
members of each class of structure; that is, on passing from one member to another we 
simply substitute one set (or more) of ions by others of different charge without changes 
in coordinates. The electrostatic energy is then simply, and obviously, a sum of terms of 
the type ~ ~ ~ 4 ~ 4 ~  where i andj refer to different ions of the unit cell. Using this approach, 
Jenkins and collaborators obtained useful results on a number of micas; these included 
a study of the energetics of expansion of phyllosilicates (following earlier studies of 
Giese (1974)) which was used to estimate the magnitude of interlayer binding. 

Calculations of this nature are doubtless of use and allow a large number of 
structures to be examined rapidly; although with the continued growth in computer 
power, full electrostatic energy calculations on very large units cells are becoming 
routine and inexpensive. Moreover, the role of purely electrostatic energy calculations 
is unquestionably limited. Detailed modelling studies require the inclusion of a 
representation of the short-range energies, the topic taken up in the next section. 

3.3. Born-model calculations 
This category differs from the previous one in that non-coulombic terms in the 

interionic potentials are included, following Born’s original model for ionic solids. 
Indeed, the aim is to derive potentials that give an accurate representation of the energy 
of the crystal (either perfect or defective) as a function of ‘all atomic coordinates. The 
scope of calculations employing the full potential is, as noted, far greater than those in 
which the electrostatic terms alone are considered. The construction of such potentials 
is, however, a demanding task. In the discussion which follows, we first consider the 
models that have been used in describing the short-range potentials; we then consider 
the important question of the modelling of polarizability. Having described the 
potential models we are then in a position to discuss the types of calculation which may 
be performed. Here we pay greatest attention to our own recent work; a recent review of 
other calculations is available from Burnham (1985). 

3.3.1. Potential models 
By potential models, we mean those in which the cohesive energy of the solid is 

described as a function of the unit cell dimensions and atomic coordinates, and where 
the interatomic forces are calculable from the derivatives of the interatomic potentials 
which are written as functions of interatomic separations. 

In contrast, force constant model descriptions of the solid provide only the 
derivative of the potential energy at the interatomic separations or bond angle in the 
perfect structure (and not at other separations or bond angles). Force constant models 
have been developed for SiO, by Streifler and Barsch (1975,1976). The simplest type of 
potential model treats atoms or ions as hard spheres, to which radii are assigned. 
Models of this type are discussed by O’Keefe and Hyde (1978), and O’Keefe (1977), 
following Glidewell (1975). Detailed predictions of the properties of solids, especially 
those not directly related to structural stability, e.g. dynamical or transport properties, 
require a more sophisticated description of the interatomic potentials and we discuss 
such potentials below. 
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(i) Non-coulombic terms 
The non-coulombic component of the potential is a complex quantity with 

several components, of which the most important are: (i) the short-range repulsions 
that come into play when atomic charge clouds overlap; (ii) the longer-range attractive 
forces due to dispersive interactions; and (iii) effects of covalent bonding. Despite this 
complexity, simple analytical functions have generally been used to describe these 
terms. A favoured function, widely used in potentials for ionic crystals, is the 
Buckingham potential: 

(3) V(r) = A exp (- r / p ) -  C r P 6  

in which an exponential repulsive (Born-Mayer) function is supplemented by an 
attractive F 6  term. The latter has the correct analytical form for a dispersive 
interaction, although in practice, other attractive terms are very probably included in 
this term. The function is of the two-body, central-force type, i.e. the potential depends 
on the distance between pairs of particles and includes no angle-dependent forces. This 
feature is common to other analytical functions, e.g. the Morse and Lennard-Jones 
potentials that have been used in modelling solids. It is a major restriction when 
attempting to model silicates, for which angle-dependent, covalent forces are certainly 
significant. 

Notwithstanding the previous comment, a number of workers have developed 
interatomic potentials for silicates using central-force potentials. Parker and co- 
workers (Parker 1982,1983, Parker et al. 1984) derived potentials based on fully ionic 
models with Buckingham potentials acting between Si-0 and 0-0 pairs (they found it 
unnecessary to include such functions between Si-Si pairs). Their models perform 
surprisingly well, as discussed below, in predicting structural properties of a number of 
silicate structures based on isolated SiO, tetrahedra or on silicate rings and chains. 
Potential models have also been derived for Mg,SiO, by Catti (1981) and Matsui and 
Busing (1984 a, b). However, application of pair-potential models to framework 
structured silicates, e.g. SiO,, leads to serious failures. These are essentially associated 
with the omission of terms in the potential constraining the SiO, units to retain 
tetrahedrality, i.e. the absence of an explicit contribution from ‘covalent effects. A 
particularly simple solution of this problem was chosen by Sanders et al. (1984) who 
added to the Born model potential, energy terms of the type: 

.qe) = K,(O - eo)2 (4) 
where 8 refers to 0-Si-0 bond angles and 8, is the tetrahedral angle; K ,  is an harmonic 
force constant. It was found that the inclusion of these terms led to accurate modelling 
of the structure and properties of a-quartz, and, indeed, of other polymorphs of silica. 
Further details will again be given below, but the success of this approach will 
undoubtedly allow a much wider range of silicates and aluminosilicates to be treated in 
this manner. 

(ii) Polarization 
Detailed modelling studies require a treatment of polarization, including both 

displacement, due to relaxation of ions from their regular lattice sites, and electronic, 
due to deformation or distortion of the electron cloud, for example in the calculation of 
defect energetics. Displacement polarizability is accounted for naturally, through the 
equilibration of the structure around the defect during energy minimization (see 
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Section 3.3.2 below). The discussion that follows is concerned with the electronic 
contribution to ion polarizability. In silicates it may be necessary to consider oxide ion 
polarizability, and in some cases that of the extra-framework cations. The most 
successful treatments of polarizability in solid-state studies have been based on the shell 
model originally described by Dick and Overhauser (1958). This is a simple mechanical 
model of an atom or ion in which, as illustrated in figure 4, a massless ‘shell’ is connected 
by an harmonic spring to a ‘core’ in which the mass of the atom is concentrated; the 
former represents the polarizable valence shell electrons and the latter, the nucleus and 
unpolarizable core electrons. The development of a dipole moment is described in 
terms of the displacement of the shell relative to the core. The polarizability; a, is 
calculated as: 

a= Y 2 / ( k + R )  (5)  

where Y is the shell charge, k is the harmonic force constant and R represents the 
damping of the polarizability due to the short-range forces. 

Despite its crudity, the shell model includes one vital feature of polarizability in the 
solid state: polarization and short-range repulsive forces are coupled, if short-range 
forces are assumed to act between shells. This coupling acts so as to dampen the 
polarization and its omission, as in simpler point-dipole models, results in excessively 
large values of this term, manifested by inadequacy in calculated dielectric and lattice 
dynamical properties of the solid; and in extreme cases by instabilities known as the 
polarization catastrophe (Faux 1971, Faux and Lidiard 1971). In contrast, shell model 
potentials peiform well in reproducing elastic and dielectric properties of materials, as 
well as phonon dispersion curves. 

(iii) Parametrization 
Potential models require ‘parametrization’, i.e. for each structure or compound 

values must be assigned to the variable parameters (e.g. A, p and C in equation (3)) in the 
description of the short-range potential and in the polarization terms. In modelling 
silicates, as indeed many other materials, the main approach used has been to ‘fit’ 

Cation Anion 
net charge net chcrge 

x1 + Y1 x2 + YZ 

Core charge Core charge 
x 2  

Charge Y1 

Figure 4. Schematic representation of the shell model. 
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parameters to bulk crystal properties. In many silicates, the structure itself is 
characterized by several parameters, all of which can be used as data to which potential 
parameters may be fitted. In practice, the procedure is to calculate, with a given 
potential, the forces acting on atoms in the crystal (and the forces of dilation or 
compression acting on the whole unit-cell) and adjust the potential parameters via a 
least-squares fitting routine until the calculated forces are a minimum, i.e. the potential 
gives the crystal as close as possible to equilibrium with the observed structure. 

The above procedure was used with success by Parker (1982) and Parker et al. 
(1984) in obtaining pair potentials for silicates, as discussed below. The reliability of the 
empirical fitting procedure is, however, greatly increased when elastic, dielectric and 
lattice dynamical data are available in addition to structural properties. Such data were 
used by Price and Parker (1984) in a detailed study of Mg2Si04. This work is of 
considerable interest as it provided some support for the superiority of interatomic 
potentials based on partial charges. 

(iv) Extension to simple Born-model treatment 
The siliceous mineral for which there is the greatest amount of reliable crystal data 

is, of course, a-SiO,. As other workers had found, Sanders et al. (1984), and Sanders 
(1984), in a recent, detailed study of the potential for this material, established very 
clearly the inadequacy of two-body potential models; it is not possible using such 
models to reproduce structural, elastic and dielectric data. However, when bond 
bending terms (around the 04-0 angles) of the type described in equation (4) were 
included, it proved possible to derive a potential model that satisfactorily calculates 
these data and is compatible with the observed structure of a-SO,. The potential 
parameters for the model, which included polarizability on the oxygen ions, are 
summarized in table 1 (a). Calculated and experimental crystal properties are given in 
table 1 (b) which also gives the results of the best fit that could be achieved using two- 
body potentials; the success of former and the inadequacy of the latter is clear. In 
addition the calculated phonon dispersion curves are in fair agreement with experiment 
for the bond-bending potential as shown in figure 5 which illustrates results for the 
Cur, y ~ ,  01 branch. In contrast, two-body models performed badly in the calculation of 
lattice dynamical properties. 

Further evidence for the viability of bond-bending potentials in the modelling of 
framework-structured silicates will be provided in the following section. ‘Empirical’ 
potentials of this type do, however, have the inherent limitation that their reliability is 
guaranteed only for interatomic spacings close to those in the perfect lattice of the 
crystal used in deriving the parameters; although the success of empirical potentials in 
modelling the defect properties of a wide range of oxides and halides (Catlow et al. 
1977,1979) suggests that this limitation may not be too serious in practice. Neverthe- 
less, there is a powerful incentive for developing theoretical methods for parametrizing 
interatomic potentials. In studies of simpler oxides and halide materials, considerable 
use has been made of electron gas models of the atom in deriving pair-potentials; a 
detailed discussion is given by Mackrodt and Stewart (1977,1979). Greater reliability 
might be expected from the use of the ab initio, Hartree-Fock calculations. Indeed, this 
is ;I rapidly developing field, with studies reported recently by Mackrodt et al. (1980), 
and Saul cl t r l .  ( 1989. One aspect of this work that seems to be increasingly clear is the 
need to include thc effect of the crystal environment when carrying out quantum 
mechanical calculations on pair potentials. Several studies have shown that failure to 
include these terms may lead to unreliable results. 
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238 C. R. A. Cutlow und A .  N. Cormck  

Table 1 - 
(a) Potential parameters for SO,, quartz (from Leslie et al. 1984) 

Short-range potentials: V(r) = A exp (- r / p )  - Cr-6  
Si ... 0 o...o 

4eV) 
1283.9 22764-0 

P ( 4  
C ( ~ V  A - 6 ,  

Bond-bending force constant, 0 4 - 0 ,  V= k ,  (0- O,)’, (kb= 2097 eV/rad2) 

0.3205 0.149 
10.66 27.88 

shell charge (/el) spring constant ( e V k 2 )  

Si 4.00 9999999.9 
0 - 2.8482 79.88 

(b) Experimental and calculated crystal properties of a-quartz 

Elastic constants (10” dynecm-’): 
Expt.  Calculated 

3-body 2-body 
CI 1 8-683 8.815 6.204 
c33 10-598 10.605 7.466 
C , ,  0.709 0.276 0.770 
Cl3 1.193 1.151 1.629 
c46 5.826 5-296 3.301 
c66 3.987 4.269 2737 
Cl4 - 1.806 - 1.666 - 1-012 

Static dielectric constant 

E l  1 4.520 4.452 5.513 
E3 3 4-640 4.8 12 6.086 

High-frequency dielectric constant 

Em 2.40 2.04 2.07 

To date, although there have been several quantum mechanical studies of bonding 
in silicates (see 3.4), these methods have not been extensively applied to the study of 
interatomic potentials. Such studies should, we believe, be encouraged. 

This concludes our study of interatomic potential models for silicates. The 
development of such models obviously raises the wider question on bonding in these 
compounds to which we return later. We continue with an account of the application of 
the potentials to the study of silicate structures. 

3.3.2. Structure prediction and calculation of crystal properties 
Given viable interatomic potential models, crystal structures may be predicted 

using energy minimization techniques. In concept, the procedure is simple: structural 
parameters (cell-dimensions and unit-cell coordinates) are varied until the minimum 
energy configuration is generated. A variety of algorithms are available for carrying out 
the computational, minimization procedure. The most successful are ‘Newton’ 
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Computer modelling of silicates 239 

Figure 5. Phonon spectrum for a-quartz along [q,r,O]. (Sanders et al. 1984.) 
(Not all optical branches included.) 

methods, in which second derivatives of the lattice energy with respect to particle 
coordinates are calculated. The iterative minimization procedure is then carried out 
with the vector x ( P + I )  of unit-cell coordinates in the ( p  + 1)th iteration being related to 
that in the pth iteration by the relationship: 

(6) x l P  ’ 1 I - (PI 1 ( w- 1 ) ( P l g ( P )  - X  

where g ( P )  is a gradient vector containing the derivatives of the energy with respect to 
coordinates and W P )  is a matrix, whose elements w.j are the second derivatives of the 
energy with respect to coordinates, i.e. 

Such methods are rapidly convergent, but have the disadvantage that the second 
derivative matrix must be calculated, stored and inverted. There are procedures for 
‘updating’ the inverse of the matrix, without recalculation, each iteration. Nevertheless, 
the need to store the (inverse) matrix becomes a serious problem with large complex 
structures. The matrix is of dimension 3N x 3N (6N x 6N if a shell model description is 
included), where N is the number of atoms in the unit cell. Thus for a cell containing 300 
atoms, approximately 1 megaword of cpu memory is needed; this is approaching the 
limit of even the largest modern computer. For this reason it is necessary, in studies of 
very complex structures, to use alternative minimization procedures, which employ 
only first derivatives. The conjugate gradient method of Fletcher and Powell (1963) has 
proved to be one of the most effective, although such methods are invariably more 
slowly convergent than Newton procedures. 
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Full structure prediction includes minimization with respect to cell dimensions as 
well as unit cell coordinates. In the energy minimization studies of silicates reported by 
the present authors the following procedures have been adopted. First, the atom 
positions are equilibrated, with the given unit cell. Next, the cell dimensions are 
adjusted in the following manner for the lattice vector a: 

(7) 1 a: = (1 + &ii)ax + E i j a y  f 

& = & i j a x + ( 1  + E j j ) a y + E j k a z  

a: = E i k a x  + E j k a y  + (1 + Ekk)@z 

where E is the bulk strain matrix, acting on the unit cell; similar results obtain for 
b and c. 

The lattice energy is then minimized with respect to coordinates in the new unit cell, 
after which cell dimensions are again adjusted. This ‘double-iterative’ procedure is then 
continued until the unit cell strains have been eliminated. In practice it is rarely 
necessary to adjust the cell dimensions more than four times. 

These techniques have now been applied to several classes of silicate which will be 
classified according to the structure of the silicate sublattice, as described in Section 2. 

(i) Orthosilicates 
The greatest amount of work has been reported on Mg,SiO,. The structure of this 

important mineral is shown in figure 6 it is based on an hcp (hexagonal close-packed) 
oxygen sublattice with Mg occupying octahedral sites and Si tetrahedral sites-indeed 
distinct SiO, units can be identified in the structure. As is evident from the figure, the 
oxygen sublattice is extremely ‘puckered’. Pair potential models developed by Parker 
and co-workers (1982,1984) were surprisingly successful in reproducing the structure of 
this mineral, including the complex puckering of the oxygen sublattice. However, the 
fully ionic, pair-potential models did have definite deficiencies, with one of the Si-0 
bond lengths being in error by 0.15A. Notable improvements were effected by Price 
and Parker (1984) who used partial ion charges; they also employed Morse potentials 
in addition to Born-Mayer functions to describe the Si-0 interaction. Using such 
potential models, they were able to reproduce very accurately the structure of this 
crystal. In addition, elastic and dielectric constants were well reproduced. Recently, 
Parker and Price (1985) have studied the energetics of the phase transition from the c! 
structure to the high pressure spinel phase. This calculation performed well in 

O(2) O W  O(I) O(3) O(2) O(3) O(I) 

Figure 6. Projection of the structure of olivine showing ‘puckered’ oxygen plane. 
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reproducing the energies of the transition: a calculated value of 20kJmol-' was 
obtained compared with an experimental value of 22 kJ mol- However, Parker found 
that the calculated energy of the transition was exceptionally sensitive to the potential 
parameters. Thus a change in the value of 'p' of 10-4in the Born-Mayer potential led to 
a change in of 7kJmol-l. Clearly, the calculation of phase transition energies makes 
exceptional demands on interatomic potentials. It is apparent that there is considerable 
scope for more detailed studies on the interatomic potentials, especially in silicates. 

(ii) Metasilicates 
Calculations have been reported on both ring and chain-structured metasilicates. 

In the former category the mineral beryl (Al,Be,Si,O,,), based on a six-membered 
ring, the three-membered ring structure Na,Be,Si30,, and a-Sr,Si,O, were studied 
by Parker et al. (1984). Pair-potential models could adequately reproduce the main 
features of these structures although in some cases calculated bond lengths deviated 
from experimental values by as much as 0.2 A. 

The chain-structured metasilicates were also extensively studied by Parker et al. 
(1984) and Catlow et al. (1982). The former work again demonstrated the viability of 
pair-potential models in reproducing reasonably the structural properties of several 
minerals including wollastonite (CaSiO,) and rhodonite (MnSiO,). A detailed study 
was made of four pyroxenoid structures (diopside, ~-wollastonite, rhodonite and 
pyroxmangite). Each structure adopts a different mode of linking the tetrahedra 
together in the (SiO,), chains (see figure 1). The relative energies of these different repeat 
units, as a function of ion size, were studied by Catlow et al. (1982). The results of the 
study are shown graphically in figure 7. The wollastonite and rhodonite structures were 
calculated to be more stable than diopside and pyroxmangite. However, in view of the 
sensitivity of phase transition energies to potential parameters as revealed by Parker's 
study of olivine, discussed above, it would be desirable to repeat these calculations with 
a variety of potentials. 

devlotion due to 
mixed cation effect 

o overage rodius 
of fMi.Ma) 

Pyrox mangite 

&a+ Sr2+ 5 -0.8 - M92+ Fca+ MnI' 
I ,  I I  I I  I I I I  I I , I  
0 . 8 0  ' 0.90 1.0 1-10 1.20 

Ionic Radii (A )  (Goldschmidt) 

Figure 7. Energy of MSiO, unit (eV) relative to diopside. Smallest energy represents most 
stable configuration. 
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(iii) Framework-structured silicates 
As discussed in Section 3.2.1, it is clear that two-body potentials are not so 

successful for the more open framework structures adopted by SiO, and many other 
aluminosilicates, for example, zeolites, a very important class of mineral. We saw, 
however, that inclusion of bond-bending terms did allow us to model successfully the 
structure and properties of a-quartz. Moreover, we found that the same potential could 
also reproduce well the structures of other polymorphs of SiO,. In particular, energy 
minimization studies gave equilibrated structures for coesite, tridymite and 
a-cristobalite that were close to those observed experimentally (i.e. cell dimensions to 
within 1% and atomic coordinates to within 0.1 8, of the experimental values). These 
results encourage confidence in the applicability of this bond-bending potential for 
SiO, to other systems, such as the zeolites which we discuss next. 

Studies of zeolites have been of two types. First, calculations have been performed 
with fixed frameworks with respect to which the extra-framework cation positions have 
been optimized. Secondly, full energy-minimization studies have been reported, in 
which the minimum energy position of both framework and non-framework atoms are 
calculated. 

In the former category, there is the detailed study of the cation distribution in 
faujasites undertaken by Sanders (1984) and Sanders and Catlow (1983). Faujasites are 
one of the most important classes of zeolite and their structures are based on the well 
known cubo-octahedral cages connected via their six-rings as shown in figure 8. 
Diffraction studies have shown that the charge compensating extra framework cations 
are distributed predominantly over sites adjacent to six rings, with a small fraction 
occupying ill-defined positions in the super cage. There are three distinct types of six- 
ring sites: S; sites are within the cubo-octahedra @-cages) and neighbour those six-rings 
which are directly linked to six-rings in other P-cages; S, sites are within the hexagonal 
prisms created by the linking of the six-rings, while S, sites are adjacent to unlinked six- 
rings. Sanders (1984) and Sanders and Catlow (1983) reported a detailed study of the 
cation distribution over these sites. They concentrated on the case where Si/Al= 1.4 in 
K-faujasite. This ratio was chosen because there had been a detailed study of the 
possible Si/Al ordering schemes over the tetrahedral sites reported by Klinowski et al. 
(1982) and Melchior et al. (1982), and one of the main aims of these calculations was to 
test the sensitivity of the distribution of the extra-framework cations to that of the Si 
and A1 ions. 

An initial examination of Madelung potentials showed that the S,, sites were by far 
the most energetically favoured. This accords well with experiment as S,, sites were 
found to be fully occupied in the diffraction studies of Mortier et al. (1976). Subsequent 

\ 

Figure 8. Linkage of cubo-octahedra in faujasite 
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calculations therefore carefully examined the distribution of the remaining K +  cations 
over the S, and S; sites. In performing these calculations it was necessary to take into 
account the observation of Mortier et al. (1976), that a proportion of the K f  cations 
(approximately six per unit cell) are located in ill-defined sites in the supercage (i.e. the 
large voids in the structure). Sanders (1984) therefore performed calculations in which 
six cations were placed in the centre of the supercage (in the faujasite structure) and the 
remaining ions were permuted over the S, and S; sites. Detailed energy minimization 
with respect to the cation positions was then performed on the more energetically 
promising configurations. 

The results showed that for most %/A1 ordering schemes, the favoured configur- 
ations had equal occupancy of the S ,  and S; sites. This, in fact, accords with the 
experimental work of Mortier et al. (1976); moreover, the minimum energy positions 
occupied by the Kf  ions are close to those reported in that study. The details of the 
cation distribution are sensitive to the nature of the Si/Al ordering. Thus the 
calculations came up with the surprising prediction that for certain Si/Al distributions 
it was possible to have simultaneous occupancy of neighbouring S, and S; sites, despite 
the unfavourable cation-cation repulsion energy. However, the calculations also 
showed that after energy minimization, the lattice energies of the different %/A1 
ordering schemes were all similar. It seems that the extra-framework cations can 
readjust their positions in response to changes in the A1 distribution, so as largely to 
remove any change in the total energy of the system. 

The results suggest that any strong preference for a particular ordering scheme, 
such as the well known aluminium avoidance principle, formulated as Lowenstein’s 
rule, may have a kinetic, rather than thermodynamic, basis. Indeed, preliminary 
calculations on Na-zeolite A (Sanders, unpublished work) have suggested that A1-0- 
A1 linkages are not energetically prohibitive. Sanders (1984) and Sanders et al. (1984) 
also studied the cation distribution in zeolite A (in which the cubo-octahedra are linked 
through their four-rings). The particular system on which they concentrated was 
(dehydrated) Sr-zeolite A, where there had been some controversy (Pluth and Smith 
1982, Firor and Seff 1978) concerning the distribution of Sr between six and eight-ring 
sites, these latter being created when the cubo-octahedra are linked together. Sander’s 
conclusion clearly showed that the most energetically favoured cation distribution 
confined the Sr2+ to the six-ring sites, in agreement with the structural study of Pluth 
and Smith (1982). Indeed, the detailed cation distribution predicted by the calculations 
accorded well with that experimental study. 

Sr-zeolite A was also the subject of an energy minimization study in which the 
framework, as well as the extra-framework, atoms were relaxed (Sanders 1984). As 
noted earlier, the simple two-body potentials fail badly when used in energy 
minimization studies of framework-structured silicates. However, when the ‘bond- 
bending’ potential described earlier was used, the results were again encouraging. The 
energy-minimized structure was found to be close to that observed experimentally. 
Moreover, the calculations found intriguing variations in the framework geometry, 
depending on whether or not an adjacent (non-framework) cation site was occupied by 
an Sr2+ ion. This type of information on local structure is not accessible from Bragg 
diffraction studies, although it could, in principle, be obtained from local structure 
probes, such as EXAFS. 

As yet unpublished work of Jackson has shown that full energy minimization 
studies are also successful when applied to Na-Zeolite A. In addition, a very recent 
study by Hope (1985) has shown that it is possible to reproduce adequately the 
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structure of pentasil zeolites such as the pure silica zeolite, silicalite, by energy 
minimization procedures using the ‘bond-bending’ potential. It seems, therefore, that 
present potentials and methodology are capable of modelling successfully the complex 
properties of zeolites; and there is clearly great scope for further work in this field. 

There have been relatively few calculations on other framework silicates (except for 
SiO,). Studies of alkali cation positional disorder in feldspars have been reported by 
e.g. Brown and Fenn (1979), but their model was largely electrostatic. In view of the 
success of the calculations on zeolites, further studies of feldspars would clearly be of 
interest. 

(iv) Defect calculations 
Although defect calculations have been very extensively applied to studies of ionic 

halides and oxides, there has been very little work on silicates. Lasaga (1980) used 
Mott-Littleton-like procedures to examine vacancy energies in magnesium olivine. His 
results are collected in table 2 where they are compared with recent work of Doherty in 
Catlow (1986). The very considerable difference reflects the use of a partially ionic 
model in Lasaga’s work, unlike Doherty’s study, where the potential model used fully 
ionic charges-the P1 potential of Price and Parker (1984). 

Table 2. 

(a) Vacancy energies (ev) in Mg,SiO, 

Species Mg(1) M a )  Si O(1) O(2) O(3) 
23.842 25.609 90.256 25.558 23.617 23.280 

11s 3.854 6.404 - 1.422 1.455 0.592 
I t  

(b) Interstitial energies (ev) in Mg2Si0, 

Species Type of site Interstitial energy Frenkel energy 
Mg Tetrahedral - 18.192 to - 18.505 5.34 
Mg Octahedral - 14-023 982 
Si Tetrahedral -67.203 to -67.920 22.34 
0 Tetrahedral - 15.961 to - 16.629 6.65 

These vacancy energies have been obtained using CASCADE (Leslie 1982). 
$These values were quoted by Lasaga (1980). 

Doherty’s study employed the CASCADE code (Leslie 1982). This program uses a 
generalized Mott-Littleton procedure of the type that has been successfully applied to 
a wide range of oxide and halide crystals (see e.g. Catlow and Mackrodt (1982) for a 
discussion of the techniques and application of defect calculations). The most 
important feature of these calculations is the accurate treatment of lattice relaxation 
around the defect. This is achieved by a procedure known as the ‘two-region’ method, in 
which a region of crystal immediately surrounding the defect and containing typically 
100-200 ions is treated atomistically with atomic coordinates being adjusted until a 
minimum energy configuration is attained. Interatomic potentials must, of course, be 
specified between the atoms in this region. In contrast, in the more distant regions of the 
crystal, where the defect forces are weak, the relaxation may be treated by pseudo- 
continuum procedures which calculate the polarization due to the effective charge of 
the defect. 
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Table 3. Schottky? energies (eV) for Mg,SiO,. 

Species Energy Species Energy 

Mg( W(1) 49,400 SiO( 1)0( 1) 141.372 
(7.761) (20.607) 
47.459 SiO( 1)0(2) 139.431 
(5.820) (1 8.666) 
47.122 Si0(1)0(3) 139.094 
(5.483) (1 8.329) 

Mg(2)0(1) 51.165 SiO( 2)0( 2) 137.490 
(9.527) (16.725) 

Md2)0(2) 49.224 SiO( 2)0(3) 137.153 
(7.586) (1 6.388) 

Mg(2)0(3) 48.248 Si0(3)0(3) 136.8 16 
(7.248) (1605 1) 

Mg( 1)0(2) 

M d W ( 3 )  

t Schottky energy is defined as the sum of the vacancy energies concerned and the lattice 
energy. The figure in parentheses is the Schottky energy, and the figure above is the sum of the 
vacancy energies of the species concerned. The lattice energy can be obtained using the potentials 
employed for Mg,SiO,. The value for MgO is -41.639 eV, and for SiO, is - 120.765 eV. 

There is now abundant evidence that, given sufficiently large sizes of the inner 
region, reliable defect energies may be calculated if good interatomic potentials are 
available. For further discussion, we again refer to Catlow and Mackrodt (1982). 

In Doherty's work, interstitial, as well as vacancy, energies were calculated. Frenkel 
(table 2) and Schottky energies (table 3) may therefore be obtained. The most important 
finding was that the lowest-energy defect reactions involve the creation of Mg2+ 
Frenkel pairs which have a formation energy of about 5eV. The calculations also 
suggest that the Mg2+ interstitial ions are mobile with an activation energy of 
-0.35 eV. This would predict an Arrhenius energy of about 3 eV for MgZf diffusion, 
and this is within the range of experimentally determined values. 

Whilst defect calculations on silicates are clearly at an early stage, the recent wsrk 
on olivine is promising and suggests that the calculations could have a considerable 
role in advancing our knowledge of transport processes in these materials. 

3.3.3. Born-model calculations: an overview 
In view of their flexibility and range of applications, Born-model calculations will 

unquestionably have a continuing and expanding role to play in simulation studies of 
silicates. There remain, however, a number of problems which require further attention 
if the scope of such calculations is to be fully realized. 

(i) The question of ionicity 
Models based on formal ionic charges have performed surprisingly well. Neverthe- 

less, there is a well founded consensus that silicates have a large covalent contribution 
to their bonding. Indeed, for the case of SO2 ,  figures of 50% are commonly quoted for 
the percentage covalent character. Catlow and Stoneham (1983) following Cochran 
(1971) argued that a non-ionic electron density distribution does not invalidate the use 
of Born-type models; and the success of the modelling work on silicates must support 
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this argument. It  should be recalled that no potential model is more than a 
mathematical description of the lattice energy of the crystal as a function of atomic 
coordinates, and that the ‘validity’ of a model is simply a question of the extent to which. 
it succeeds in this aspect. The electrostatic potential in the crystal will influence, for 
example, the distribution of extra-framework species in framework-structured silicates. 
The success of calculations on cation distribution in zeolites again suggests that Born- 
model potentials are acceptable in this respect. Nevertheless, there will no doubt be 
further attempts to derive potentials based on partial ionic charges. These in turn raise 
problems, first as to the choice of the effective charges-a notoriously difficult 
problem-and, secondly, to their use in defect studies where there are serious 
conceptual difficulties associated with point defects with non-integral charges. 

(ii) The use of bond-bending terms 
Again, we have found that the simple bond-bending term applied to 0-Si-0 bond 

angles results in apparently viable potentials. But is this the best type of function? And 
should it be confined to Si-centred bond angles? There is no definite answer to these 
questions, each of which requires further investigation. 

(iii) Parametrization 
To date, structural data have been the main source of empirical information on 

potentials. There is a need for assessment of potential models with reference to a much 
wider range of data, including elastic and dynamical properties. 

3.4. Quantum mechanical calculations 
The last few years has seen a considerable growth in the use of quantum mechanical 

calculations in investigating structure and bonding in silicates. Much of this work has 
been undertaken by Gibbs and collaborators (see e.g. Newton and Gibbs 1980, Gibbs 
et al. 1981) and by Tossell (1985). A good review is available from Gibbs (1982). In the 
present article, we cannot attempt a comprehensive account of this growing field; rather 
we wish to summarize the type of information yielded by these methods which we may 
then contrast with that available from the other techniques discussed earlier in this 
review. First, however, we present a brief summary of quantum mechanical nhethods 
that have been used. 

3.4.1. Quantum mechanical techniques 
Almost all calculations have been based on a small-cluster model, that is, a molecule 

which can be used as a model for bonding in silicates. The simplest molecule which 
allows tetrahedral silicon to be studied is Si(OH),; similarly Si(OH), may be taken as a 
model for octahedral silicon. Larger molecules are then used when, for example, the 
properties of the Si-0-Si bond are being investigated (for which calculations have been 
performed on H,Si,O,). In general, the molecules have not been ‘embedded’ i.e. there 
has been no attempt to account for the perturbation of the molecule, which is 
representing a fragment of the crystal, by the remainder of the surrounding crystal. We 
return to this point below. 

The energy is calculated as a function of its geometry. In performing such 
calculations, greatest use has in recent years been made of ab initio methods in which all 
the matrix elements needed for solution of the Hartree-Fock equations, for a given 
basis set, are fully calculated. Gaussian basis sets have commonly been used, especially 
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those in which Slater functions (STOS) are approximated by sums of Gaussian 
functions (see Gibbs (1982) for details). For larger molecules, computational con- 
straints encourage the use of methods based on more approximate methods. For 
example, Tossell and Gibbs (1978,1979) and Lasaga (1982) used the semi-empirical, 
CNDO procedure (which parameterizes certain many-electron integrals and ignores 
others) to study H6Si,0,. It is likely, however, that with the continued increase in 
computer power, the need to use semi-empirical procedures will decline. 

To date relatively few calculations have gone beyond the Hartree-Fock approxim- 
ation in studies of silicate molecules. However, configurational interaction (CI) 
methods, which are now being extensively used in studies of small molecules, will, we 
consider, find a role in this field with the increasing availability of supercomputers. 

3.4.2. Results 

renorted to data are as follows. 
The main type of information yielded by the quantum mechanical calculations 

(i) Structural properties 
Geometry optimization (the location of the minimum energy configuration of the 

molecule) can be readily performed for small molecules. The resulting bond lengths and 
bond angles can be compared with experiments. Thus Newton and Gibbs (1980) and 
Gibbs et al. (1981) calculated an SiO bond length of 1.65A in their ab initio study of 
H,SiO,; the value compares well with those measured in a range of monosilicates. A 
more complex example was the study by Meagher et al. (1980) of the energetics of 
H,Si,O, as a function of the Si-0-Si bond angles. The minimum energy was found for 
a bond angle of 140", but the potential well is very shallow. This accords reasonably 
with experimental structural studies as a wide range of Si-0-Si bond angles are 
observed in silicates, but they are generally in the range of 140-160" (although some 
larger values are observed). Calculations on small molecules can therefore reveal 
general features of experimental structural studies. However, it is impossible for studies 
of such molecules to provide information on specific structures. The calculations 
should therefore be seen as providing general guidance as to the structural chemistry of 
silicates rather than detailed predictions on particular compounds. 

(ii) Bonding 
One of the simplest types of information concerning bonding is provided by 

electron density maps. These are particularly revealing when displayed as 'deformation 
density' maps, i.e. plots of the difference between the calculated electron density and 
that predicted from a superposition of non-interacting atoms. Such calculated maps, 
which immediately reveal bonding effects, may be compared with corresponding 
experimental plots available from high-quality X-ray studies. In general, it is found that 
the agreement between theory and experiments (where available) is good. Examples are 
given in the work of Hill et al. (1983). 

Attempts may be made to partition electron density betwen different atoms, 
although this procedure is far from ambiguous. A number of prescriptions are available 
for partitioning calculated wave functions as discussed by Catlow and Stoneham 
(1983). Gibbs (1982) reports that effective charges of - 2 + for Si in silicates are typical 
for such calculations. 
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The most detailed and specific information concerning bonding relates to the 
contribution of different orbitals to the wave function. An example is the role of 3d 
orbitals-a long-standing controversy-in the bonding of silicates. Thus Newton and 
Gibbs (1980) found significant 3d orbital contribution to the bonding in H,SiO, in line 
with earlier arguments of Pauling (1980). 

(iii) Interatomic potentials models 
By performing calculations on total energies as a function of geometry and fitting 

the resulting energies to analytical potential functions it is possible to extract effective 
potentials. Thus Newton et al. (1980) and Newton and Gibbs (1980), in calculations on 
H,Si,O,, extracted Si-0 bond-stretching and Si-0-Si bond-bending force constants 
which were approximately 100 N m- and 10 N m-’ respectively. Interatomic poten- 
tials (of which force constants are the derivatives) could equally well have been 
obtained. Recent applications to interatomic potentials in quartz are reported by 
Lasaga and Gibbs (1 987). 

In the opinion of the present authors, this is one of the most promising areas for 
future development. Quantum mechanical methods will, we consider, be increasingly 
used to obtain reliable interatomic potential models which are then employed in Born- 
model calculations of the type discussed in the previous section. Another development 
which we see as important is the use of ‘embedded’ quantum mechanical cluster 
calculations, in which the cluster is surrounded by a matrix of point charges which 
represent the effect of the remaining lattice. The work of Vail et al. (1984), Vail(l985) 
and Saul et al. (1985) has shown that greatly improved accuracy is achieved by these 
procedures. Indeed, omission of this effect can lead to the evaluation of an 
unsatisfactory wave function, with correspondingly erroneous results. 

In summary, quantum mechanical methods provide valuable information, par- 
ticularly on those fundamental aspects of bonding in silicates. There is, of course, no 
conflict between quantum mechanical approaches and those described in the previous 
section that were based on effective potentials. Indeed, the former can reinforce the 
latter by providing more reliable potential parameters. 

4. Conclusions 
The use of modelling methods is evidently a rapidly developing field in the study of 

the structural chemistry of silicates. Moreover, with expansion in computer power and 
increase of sophistication of programming, an exciting future is opening for the field in 
which there will be increasing studies of problems of greater complexity. Defect and 
surface studies are as yet in their infancy; great progress is to be expected in these fields. 
Indeed, simulations should have a major impact on our understanding of transport 
properties of minerals and in particular will allow us to predict the effect of 
temperature, pressure and chemical composition on diffusion and conductivity in these 
materials. Molecular dynamics techniques which have already been applied to silicate 
melts will find an increasing range of application in the study of high-temperature 
silicates; we also envisage a further major growth area in the use of simulations in 
studying the properties of silicates under conditions of high temperature and 
pressure+onditions which have great relevance geophysically, but where experi- 
mental studies are difficult or impossible. 

A third area where expansion of the field is to be expected concerns the modelling of 
complex aluminosilicates. We have seen the value of simulation techniques in studying 
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zeolites. Further work on these important materials may be expected together with the 
application of the techniques to other framework structures, such as feldspars, and to 
the clay minerals. Finally, we recall the central role of interatomic potentials in this 
field. The development of increasingly versatile and reliable models must be a priority 
in the future; we see an increasing part to be played by quantum mechanical studies in 
such developments. 
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